Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.Acetone (CH3COCH3) is one of the most abundant three-carbon oxygen-bearing complex organic molecules (O-COMs) that have been detected in space. The previous detections were made in the gas phase toward star-forming regions that are chemically rich, mostly in protostellar systems. Recently, acetone ice has also been reported as (tentatively) detected toward two low-mass protostars, allowing comparisons in acetone abundances between gas and ice. The detection of acetone ice warrants a more systematic study of its gaseous abundances which is currently lacking. Aims.We aim to measure the gas-phase abundances of acetone in a large sample obtained from the CoCCoA program, and investigate the chemical evolution of acetone from ice to gas in protostellar systems. Methods.We fit the ALMA spectra to determine the column density, excitation temperature, and line width of acetone in 12 high-mass protostars as part of CoCCoA. We also constrained the physical properties of propanal (C2H5CHO), ketene (CH2CO), and propyne (CH3CCH), which might be chemically linked with acetone. We discuss the possible formation pathways of acetone by making comparisons in its abundances between gas and ice and between observations and simulations. Results.We firmly detect acetone, ketene, and propyne in the 12 high-mass protostars. The observed gas-phase abundances of acetone are surprisingly high compared to those of two-carbon O-COMs (especially aldehydes). Propanal is considered as tentatively detected due to lack of unblended lines covered in our data. The derived physical properties suggest that acetone, propanal, and ketene have the same origin from hot cores as other O-COMs, while propyne tends to trace the more extended outflows. The acetone-to-methanol ratios are higher in the solid phase than in the gas phase by one order of magnitude, which suggests gas-phase reprocessing after sublimation. There are several suggested formation pathways of acetone (in both ice and gas) from acetaldehyde, ketene, and propylene. The observed ratios between acetone and these three species are rather constant across the sample, and can be well reproduced by astrochemical simulations. Conclusions.On the one hand, the observed high gas-phase abundances of acetone along with dimethyl ether (CH3OCH3) and methyl formate (CH3OCHO) may hint at specific chemical mechanisms that favor the production of ethers, esters, and ketones over alcohols and aldehydes. On the other hand, the overall low gas-phase abundances of aldehydes may result from destruction pathways that are overlooked or underestimated in previous studies. The discussed formation pathways of acetone from acetaldehyde, ketene, and propylene seem plausible from observations and simulations, but more investigations are needed to draw more solid conclusions. We emphasize the importance of studying acetone, which is an abundant COM that deserves more attention in the future.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Context.Complex organic molecules (COMs) have been detected ubiquitously in protostellar systems. However, at shorter wavelengths (~0.8 mm), it is generally more difficult to detect larger molecules than at longer wavelengths (~3 mm) because of the increase in millimeter dust opacity, line confusion, and unfavorable partition function. Aims.We aim to search for large molecules (more than eight atoms) in the Atacama Large Millimeter/submillimeter Array (ALMA) Band 3 spectrum of IRAS 16293-2422 B. In particular, the goal is to quantify the usability of ALMA Band 3 for molecular line surveys in comparison to similar studies at shorter wavelengths. Methods.We used deep ALMA Band 3 observations of IRAS 16293-2422 B to search for more than 70 molecules and identified as many lines as possible in the spectrum. The spectral settings were set to specifically target three-carbon species such as i- and n-propanol and glycerol, the next step after glycolaldehyde and ethylene glycol in the hydrogenation of CO. We then derived the column densities and excitation temperatures of the detected species and compared the ratios with respect to methanol between Band 3 (~3 mm) and Band 7 (~1 mm, Protostellar Interferometric Line Survey) observations of this source to examine the effect of the dust optical depth. Results.We identified lines of 31 molecules including many oxygen-bearing COMs such as CH3OH, CH2OHCHO, CH3CH2OH, and c-C2H4O and a few nitrogen- and sulfur-bearing ones such as HOCH2CN and CH3SH. The largest detected molecules are gGg-(CH2OH)2and CH3COCH3. We did not detect glycerol or i- and n-propanol, but we do provide upper limits for them which are in line with previous laboratory and observational studies. The line density in Band 3 is only ~2.5 times lower in frequency space than in Band 7. From the detected lines in Band 3 at a ≳ 6σ level, ~25–30% of them could not be identified indicating the need for more laboratory data of rotational spectra. We find similar column densities and column density ratios of COMs (within a factor ~2) between Band 3 and Band 7. Conclusions.The effect of the dust optical depth for IRAS 16293-2422 B at an off-source location on column densities and column density ratios is minimal. Moreover, for warm protostars, long wavelength spectra (~3 mm) are not only crowded and complex, but they also take significantly longer integration times than shorter wavelength observations (~0.8 mm) to reach the same sensitivity limit. The 3 mm search has not yet resulted in the detection of larger and more complex molecules in warm sources. A full deep ALMA Band 2–3 (i.e., ~3–4 mm wavelengths) survey is needed to assess whether low frequency data have the potential to reveal more complex molecules in warm sources.more » « less
An official website of the United States government
